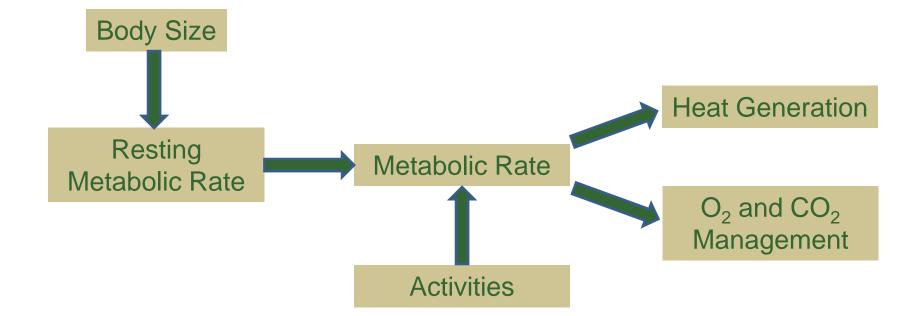
our practice is passion.


University of South Florida COLLEGE OF PUBLIC HEALTH

Estimation of Metabolic Heat for Refuge Alternative Testing

Thomas E. Bernard

Our Practice Is Our Passion

COLLECE OF PUBLIC HEALTH UNIVERSITY OF SOUTH FLORIDA

Major Findings – Metabolic Heat Rate

Body Size (men) [mean and 95th percentile]

- Height [cm (inch)]: 180 (71) and 193 (76)
- Weight [kg (lb)]: 101 (222) and 133 (293)

Metabolic Heat Rate [W] per Person

- I Person: 96 and 134 W
- 20 Persons: 96 and 114 W

Major Findings – O_2 and CO_2

Supply of Oxygen (37.4 L₀₂ / h / person)

- Average: 16.5
- 95th %ile Person: 23.1
- 20 Occupant 95th %ile Average: 19.6

Carbon Dioxide Removal (31.8 L_{CO2} / h / person)

- Average: 14.0
- 95th %ile Person: 19.6
- 20 Occupant 95th %ile Average: 16.7

Anthropometrics

Methods

Men Only: Height, Weight and Age Historical and Population-based Data Convenience Sample from UMWA Meeting

■ N = 34

Survey Sample of UMWA Membership

- Distributed Postcards
- N = 164

Results

	Mean	Standard Deviation	95 th %ile*
Height [cm]	180.0	8.1	193
Weight [kg]	100.5	19.5	133
Age [years]	45.5	11.0	

* 95th %ile = mean + 1.64 SD

Metabolic Rate

Resting Metabolic Rate (RMR)

Five Published Predictions

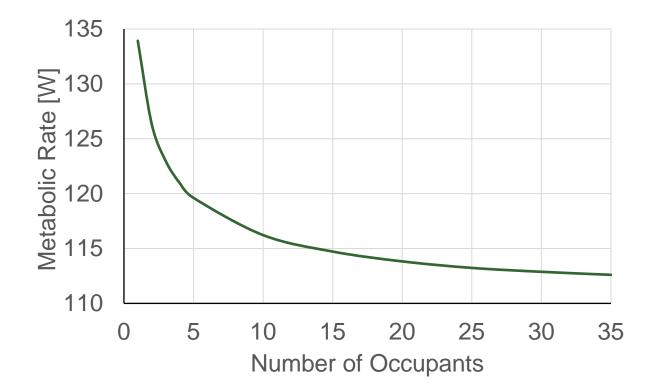
Harris and Benedict (1919): Ht, Wt, Age Mifflin and St. Jeor (1990): Ht, Wt, Age Owen, Holup et al. 1987: Wt WHO/FAO/UNU (1985): Wt WHO/FAO/UNU (1985): Ht, Wt

Distributions based on UMWA Data

	Mean RMR	St Dev of
	[kcal/day]	RMR
Harris-Benedict (H-B)	1830	244
Mifflin-St Jeor (M-SJ)	1749	190
Owen (men)	1728	178
WHO (w/o Height) (WHO)	1844	202
WHO (WHO ht)	1869	197

Method

Calculate the 95th %ile RMR by Equation and Number of Occupants


• RMR_{95th} = Mean + 1.65 SD/ \sqrt{n}

Find the highest value among the five predictors and multiply by 1.1 (add 10%)

Highest single metabolic rate and highest average for all occupants

Metabolic demands associated with operations were small compared to RMR distributed over a long time

Results

Our Practice Is Our Passion

COLLEGE OF PUBLIC HEALTH UNIVERSITY OF SOUTH FLORIDA

Metabolic Heat Rate [W] per Person

1 Person

- 95th %ile Person: 134 W
- Average Person: 96 W
- 20 Person Occupancy
 - 95th %ile Average Person: 114 W
- Simulation Requirements
 - For heat load on RA, average across all simulated persons based on occupancy
 - For individual heat tolerance, at least one simulated person at 134 W

Oxygen and Carbon Dioxide Requirements

Oxygen Requirements

Based on the 95th %ile Average

1 L_{O2} per 5 kcal of RMR

MSHA Requirement: 37.4 L_{O2} / h / person

- 20 Occupant 95th %ile Average: 19.6
- 95th %ile Average Person: 23.1
- Average: 16.5

Carbon Dioxide Removal

Based on Oxygen Requirements

$0.85 L_{CO2} per 1 L_{O2}$

MSHA Requirement: 31.8 L_{CO2} / h / person

- 20 Occupant 95th %ile Average: 16.7
- 95th %ile Average Person: 19.6
- Average: 14.0

Observations on Thermal Stress Limits

Environments Greater Than AT 95 °F

Sustained environments with Apparent Temperature greater than 105 °F have been recorded in the Middle East for four or more days.

8-h laboratory studies at USF show similar heat strain for Apparent Temperature up to 115 °F; greater heat strain at higher temperatures.

Comments on Approach

Protective Decisions

Used 95th %ile characteristics for height and weight, which likely represents less than 5% of the miner population.

Used the highest predicted 95th %ile value for RMR among the five predictor equations and added a further 10% to account for predictor uncertainty.

Used a respiratory quotient of 0.85 rather than 0.80, which is greater than the Foster-Miller recommendation, and results in greater CO_2 volumes.

Evidence that thermal environments can be greater than Apparent Temperature of 95 °F.

Other Decisions

Main activity is sitting or laying down with little moving around.

Maintenance and miscellaneous activities represent a very small portion of the overall metabolic demands.

Implications

Substantial safety margins for oxygen and carbon dioxide management.

95th %ile average based on occupancy for overall heat generation.

Should be at least one high metabolic rate simulated miner if individual tolerance is a factor.

Allowance can be safely made for excursions of AT above 95 °F (e.g., TWA over hours or drift upwards during the last 8 hours)

Acknowledgments

- David Yantek and Edward D. Thimons of CDC/NIOSH/OMHSR
- Ronald Bowersox of the UMWA
- David Maust and John Reinmann of Strata Worldwide
- Jerry Piercy and Brett Duncan of ChemBio
- Luke Ackerman of MineARC Systems America
- Barbara Kennedy of USF

Our Practice Is Our Passion

COLLEGE OF PUBLIC HEALTH UNIVERSITY OF SOUTH FLORIDA