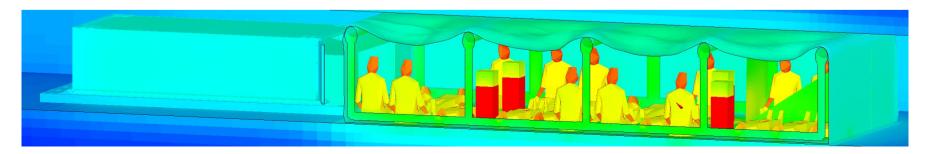
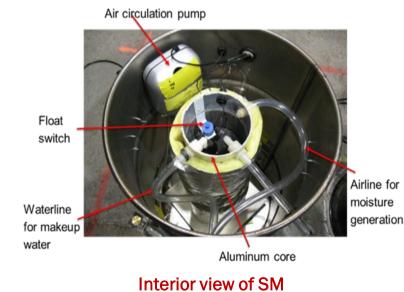
PITTSBURGH MINING RESEARCH DIVISION

In-mine RA Heat & Humidity Tests

Dave Yantek Refuge Alternative Webinar June 23, 2016 Pittsburgh, PA


Outline

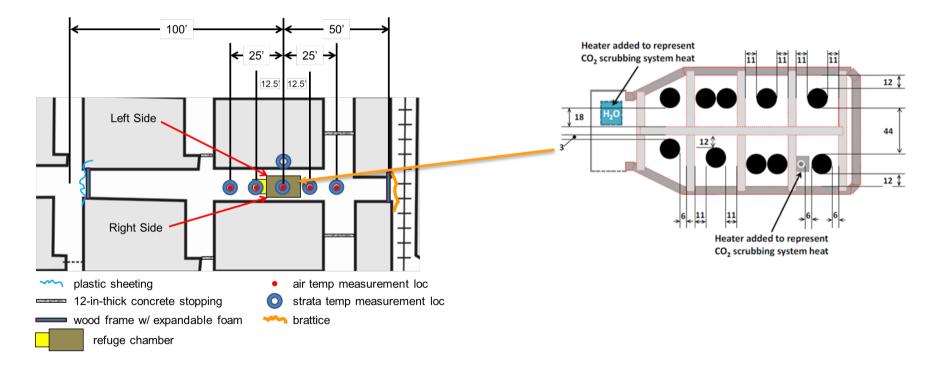
- 1. Background/introduction
- 2. Test setup for RA heat & humidity tests
- 3. Overview of NIOSH RA heat & humidity tests
- 4. Example of test results
- 5. Summary


Heat and Humidity within an RA

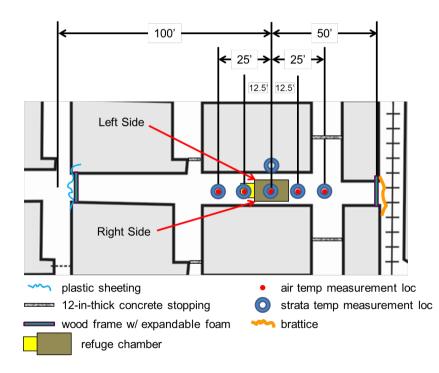
- Heat/humidity build up in an RA could result in miners suffering heat stress or even death, depending on mine temperature
- The heat sources within an RA include metabolic activity, and equipment such as the carbon dioxide (CO_2) scrubbing system
- The human body maintains a normal core temperature between 96.8°F and 100.4°F
- MSHA regulations require that the apparent temperature within an occupied should not exceed 95°F (35°C)

All NIOSH RA heat/humidity testing has been conducted using consistent heat input devices

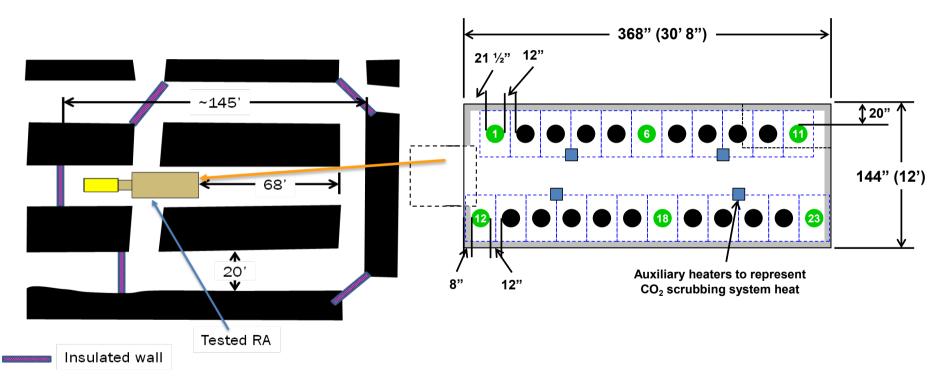
- Simulated miners (SM) to represent miners' metabolic heat
 - Use 30-gallon steel drum
 - ~1.4 L/day/SM moisture input
- Heated water tanks to represent CO₂ scrubbing system heat



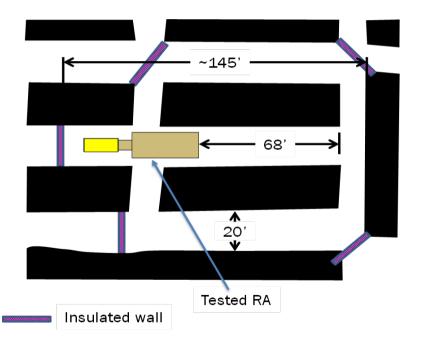
Heated water tanks


10-Person Tent-Type RA Tests (2013)

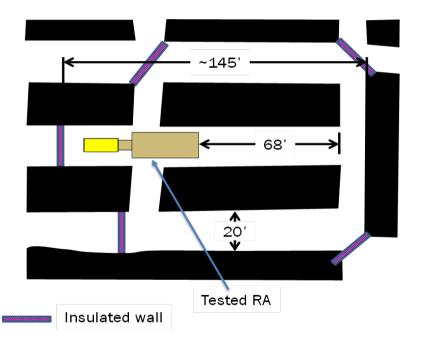
• Tests conducted by NIOSH in Safety Research Coal Mine (SRCM)


10-Person Tent-Type RA Tests (2013)

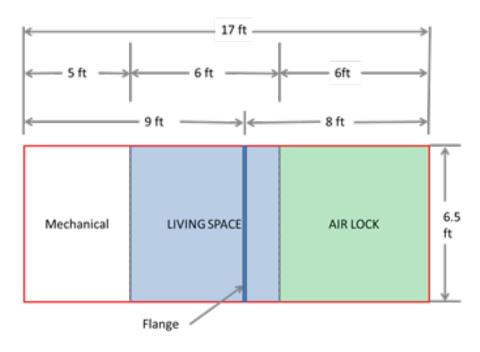
• Tests conducted by NIOSH in Safety Research Coal Mine (SRCM)



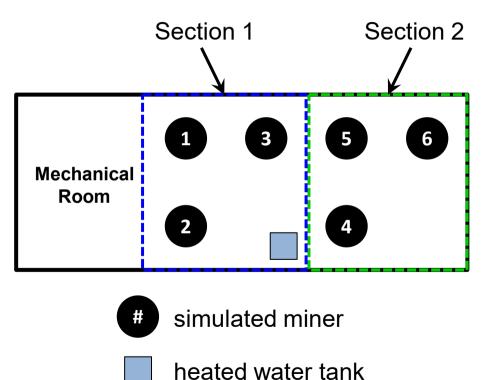
23-Person Tent-Type RA Tests (2014)



23-Person Tent-Type RA Tests (2014)

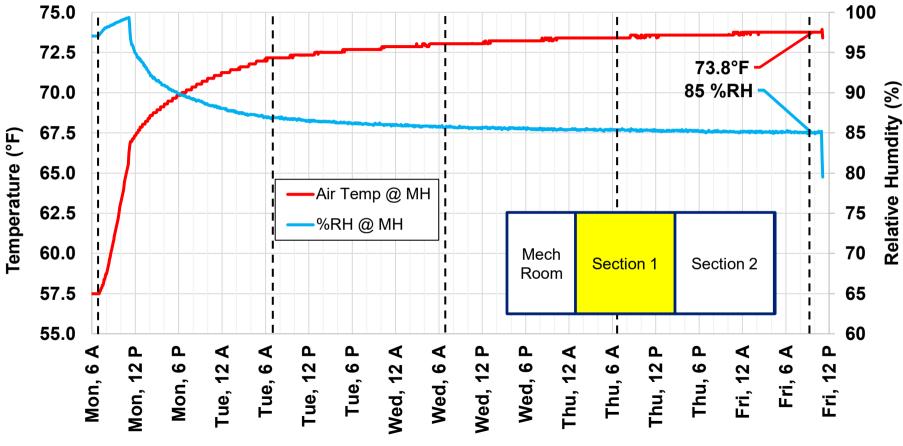


23-Person Tent-Type RA Tests (2014)



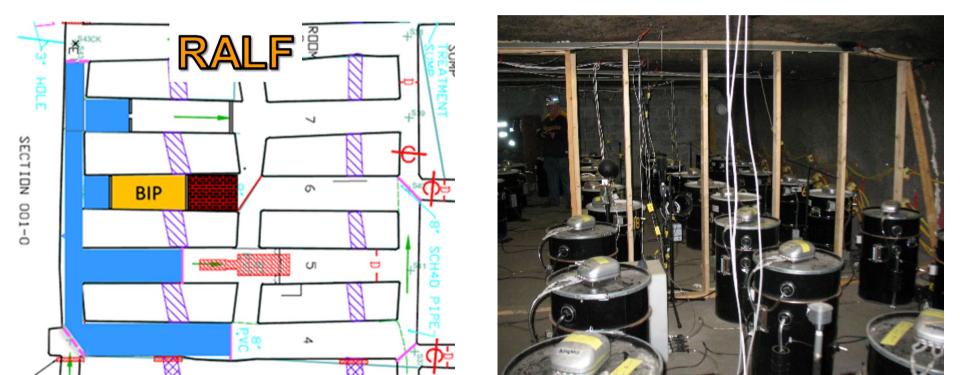
6-Person Mobile Metal-Type RA Tests (2015 - Present)

6-Person Mobile Metal-Type RA Tests (2015 - Present)



6-Person Metal-Type RA Tests (2015 - present)

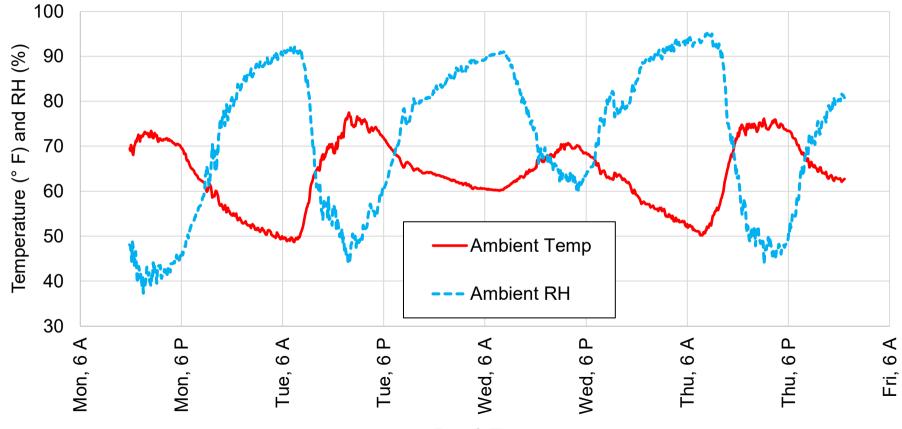
- 7 tests conducted in Experimental Mine (EM)
- Data used to benchmark thermal simulation model and to test DRS proof-ofconcept A/C system


Test	Start Date	End Date	BP Heat Input (W)	CO ₂ scrubber heat input (W)	Total Heat Input (W)	Conditions	Purpose
1	7/6/15	7/10/15	117	27.5	867	Baseline w/ moisture input	Model validation
2	7/27/15	7/31/15	117	27.5	867	Baseline w/ moisture input	Model validation
3	12/7/15	12/11/15	117	27.5	867	w/ DRS proof-of-concept A/C system	Determine capability of A/C system to control temp/RH
4	1/11/16	1/15/16	VARIES	VARIES		w/ DRS proof-of-concept A/C system, varied heat input, mine air temp elevated	Determine capability of A/C sytem to control temp/RH for elevated mine ambient (~85°F)
5	3/14/16	3/18/16	146.3	34.4	1084	w/ 25% increase in heat input	Use for benchmarking TAI thermal simulation model
6	4/4/16	4/8/16	117	27.5	867	w/ BP on 2" thick Styrofoam	MSHA request to understand effect of sitting on a bench or other object
7	4/25/16	4/29/16	117	27.5	867	Dry test	

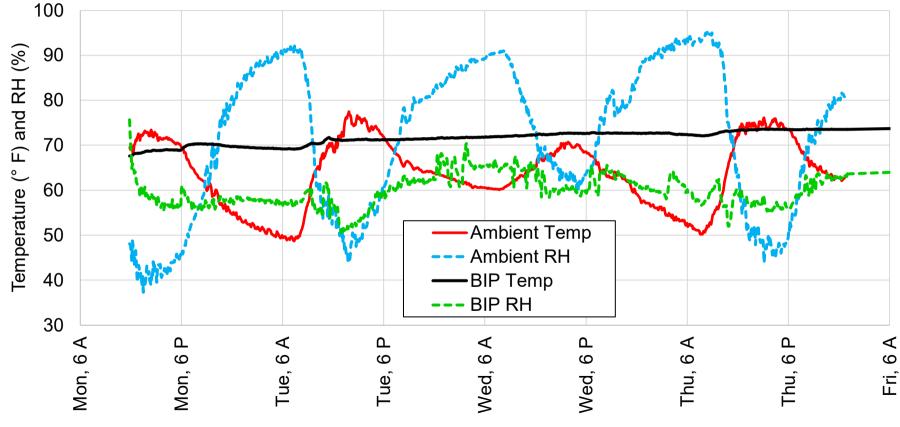
6-Person Metal-Type RA Test Results (Baseline test w/ moisture input)

Built-In Place (BIP) RA Tests (2015 - present)

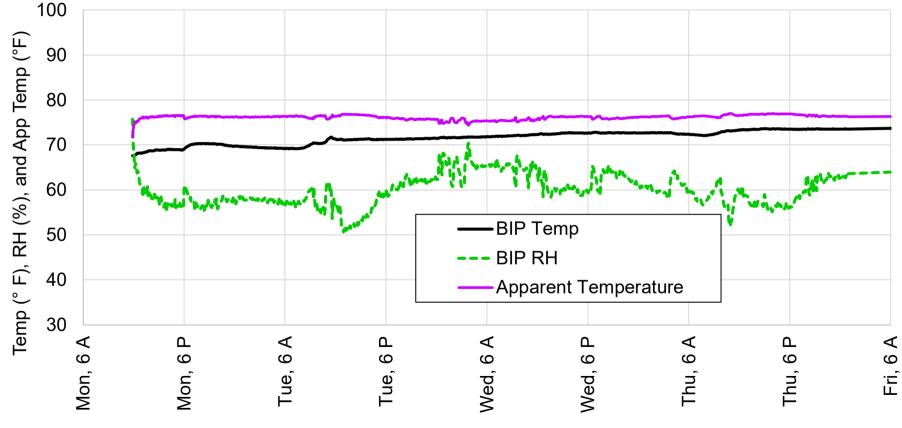
- ChemBio borehole air supply used for 60-person testing
- Partitioned into 30-person BIP for testing cryogenic air supply


60-Person Built-In Place (BIP) RA Test (2015- present)

- Tests to examine heat build up in BIP RAs
- Do BIP RAs require delivery of conditioned air?
 - Cooled air for hot mines and/or hot outside ambient conditions?
 - Heated air for cold mines and/or cold outside ambient conditions?


Те	st	Start Date	End Date	BP Heat Input (W)	CO ₂ scrubber heat input (W)*	Nominal Total Heat Input (W)	Conditions	Purpose
1	I	10/5/2015	10/9/2015	117	0		w/ ChemBio borehole air supply delivering 55°F dew point air at 750 to 800 CFM	Demo ability of the ChemBio system to deliver air (MSHA approval) and to reduce heat/humidity
2	2	1/11/2016	1/15/2016	117	0	7020		Determine need for heating air when outside air is single-digit temps (°F)
3	3	3/15/2016	3/19/2016	117	0		w/ ChemBio borehole air supply delivering unconditioned air at 750 to 800 CFM	Determine effect of delivering unheated air to BIP when outside air temps are moderate
4	ŀ	4/4/2016	4/8/2016	117	0	/////	w/ ChemBio borehole air supply delivering unconditioned air at 750 to 800 CFM	Determine if air temps inside might cause hypothermia with low heat input from miners

*Assumed that no CO₂ scrubbing system would be necessary with airflow of 12.5 SCFM/person


60-Person BIP RA Test w/ ChemBio Borehole Air Supply Delivering Cooled Air

60-Person BIP RA Test w/ ChemBio Borehole Air Supply Delivering Cooled Air

60-Person BIP RA Test w/ ChemBio Borehole Air Supply Delivering Cooled Air

30-Person Built-In Place (BIP) RA Tests (2015 - present)

- Tests conducted to examine BIP RAs supplied with compressed oxygen instead of borehole air or compressed air
- Will be discussed within heat mitigation presentation

Test	Start Date	End Date	BP Heat Input (W)	CO ₂ scrubber heat input (W)	Nominal Total Heat Input (W)	Conditions	Purpose
1	10/26/2015	10/30/2015	117	27.5	4335	w/ Cryogenic air flowing @ 13.5 L/hr	Demonstrate ability of cryogenic air supply to reduce heat/humidity
2	12/7/2015	12/11/2015	117	27.5	4335	Baseline w/ moisture input	Provide baseline conditions for comparison to Cryogenic air supply test
3	4/25/2016	4/29/2015	117	27.5	4335	Baseline dry test	

Summary of RA Heat & Humidity Tests

- Nineteen 96-hour tests over the past two years
 - 6 for 23-person tent-type RA
 - 7 for 6-person metal-type RA
 - 3 for 30-person BIP RA
 - 4 for 60-person BIP RA
- Data has been used to
 - Determine temperature rise and %RH
 - Benchmark thermal simulation models
 - Identify need for heating and/or cooling of RAs
 - Support RA heat mitigation research

Future work

- Test 60-person BIP RA w/ borehole air supply to determine if cooling is necessary when outside temperatures are ~80°F
- Continued testing to support heat mitigation system development as needed

Questions?

Dave Yantek dyantek@cdc.gov

Disclaimer: The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the National Institute for Occupational Safety and Health. Mention of any company or product does not constitute endorsement by NIOSH.

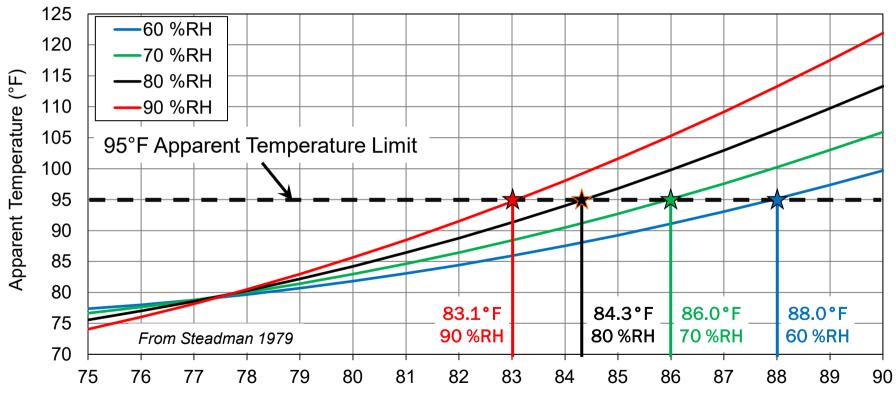
PITTSBURGH MINING RESEARCH DIVISION

RA Heat Mitigation Systems Research

Dave Yantek Refuge Alternative Webinar June 23, 2016 Pittsburgh, PA

Outline

- 1. Background/introduction
- 2. Overview of tested heat mitigation systems
- 3. Example of test results
- 4. Summary



MSHA regulations limit the apparent temperature within an occupied RA to 95°F

- Apparent temperature is a metric used to determine the perceived temperature
- Equation is complicated, uses dry-bulb temperature and relative humidity in various combinations

$$\mathbf{HI} = c_1 + c_2 T + c_3 R + c_4 T R + c_5 T^2 + c_6 R^2 + c_7 T^2 R + c_8 T R^2 + c_9 T^2 R^2$$

Reducing either the dry-bulb temperature or the relative humidity will decrease the apparent temperature

Dry-bulb Temperature (°F)

The challenge is to develop strategies to reduce apparent temperature that meet the general requirements of 30 CFR 7.504

- Electrical components that are exposed to the mine atmosphere shall be approved as intrinsically safe
- Electrical components located inside the refuge alternative shall be either approved as intrinsically safe or approved as permissible