



Missouri University of Science and Technology

#### **PROGRESS UPDATE ON CDC-NIOSH U60 PROGRAM**

Research, Technological Innovations in Automation, Robotics, and Other Intelligent (ARI) Mining Systems for Transformative Improvements in Workplace Safety, Health, and Efficiencies

**Samuel Frimpong, PhD, PEng** Professor of Mining and Explosives Engineering

October 10, 2024





## **Motivation and Objectives**

Research Leadership and Personnel Partnership with Industry and CDC-NIOSH



## **Research Focus Areas**

**Research Progress Updates** 

**Summary and Conclusions** 

# **Research Motivation and Background**

- U.S. Mining Industry has advanced Technological Innovations to improve Safety, and Health
- No. of Fatalities decreased by 65% from 206 (1984) to 71 (2010)
- Fatality Rate decreased by 56% from 58.43 (1984) to 25.74 (2010)
- BUT the 2021 Rate of 16.15 was 4X Average Rate for US industries
  - The NEED for Research, Technological Innovations and their Effective Deployment and Management within the Next Two Decades



# **Primary Research Objective**

Contribute Towards Eliminating Mining Fatalities within the Next Two Decades by Efficiently Managing ARI Systems, and Controlling their Risks and Hazards, within Human-Centered Environments

# **Specific Objectives**

- Accurate Predictions, and Process Management to assure ARI Systems
- Secure, Protect, and Prevent Adversarial Attacks against ARI Systems
- Efficient Management in the New Paradigm
- Transfer Bulk Data to provide 360<sup>°</sup> Vision and Prevent Collisions
- Safe Operations in Dangerous Mining Environments
- Intelligent Evacuation in Post-Disaster Emergencies



# **Research Leadership (S&T & UKY)**

| No. | Research Faculty      | Role      | Discipline                          | Focus Areas     |
|-----|-----------------------|-----------|-------------------------------------|-----------------|
| 1   | Dr. Samuel Frimpong   | PI        | Mining & Explosives Engineering     | IDA/CSNS/IMRPDS |
| 2   | Dr. Kwame Awuah-Offei | Co-PI     | Mining & Explosives Engineering     | HF/IMRPDS       |
| 3   | Dr. Sanjay Madria     | Co-PI     | Computer Science                    | IDA/CSNS/IMRPDS |
| 4   | Dr. Venkat Allada     | Co-PI     | Eng Management & Systems Eng        | HF/IMRPDS       |
| 5   | Dr. Yun Seong Song    | Co-PI     | Mechanical & Aerospace Engineering  | IRAM/IMRPDS     |
| 6   | Dr. Maciej Zawodniok  | Co-PI     | Electrical & Computer Engineering   | ICS/IMRPDS      |
| 7   | Dr. Devin Burns       | Co-PI     | Psychological Science               | HF/IMRPDS       |
| 8   | Dr. Muhammad A Raza   | Res. Mgr. | Mining & Explosives Engineering     | IMRPDS          |
| 9   | Dr. Pedram Roghanchi  | Co-PI     | Mining Engineering/Univ of Kentucky | IDA             |



#### **Post-Doctoral/Doctoral Researchers**

|     |                           | -      |            |                              |
|-----|---------------------------|--------|------------|------------------------------|
| No. | Name                      | Status | Discipline | Focus Area                   |
| 1   | Dr. Khawar Naheem         | PDF    | MIN ENG    | AI/ML, Cybersecurity         |
| 2   | Dr. Mohamed A Elmahallawy | PDF    | COMP SCI   | AI/ML, Cybersecurity         |
| 3   | Dr. Saima Ghazal          | PDF    | PSYCH SCI  | Human Factors                |
| 4   | Mabel Obosu               | PhD    | MIN ENG    | AI/ML in Automation Safety   |
| 5   | Rosebella Osei            | PhD    | ENG MGMT   | Change Management            |
| 6   | Michael Tweneboah         | PhD    | MIN ENG    | Human Factors                |
| 7   | Md. Sazedur Rahman        | PhD    | COMP SCI   | Big Data Analytics           |
| 8   | Mizanur Rahman Jewel      | PhD    | COMP SCI   | AI/ML Predictive Modeling    |
| 9   | Khosro Ghorbani Zadeh     | PhD    | MECH ENG   | Robotic Assistance in Mining |
| 10  | Ellen Essien              | PhD    | MIN ENG    | AI/ML in Mine Safety         |
| 11  | Sai Prabhath Koneru       | PhD    | COMP ENG   | Wireless Communication       |
| 12  | Esther Gyabaah            | PhD    | MIN ENG    | Thermal Robotics             |
| 13  | Philip Samil              | PhD    | MIN ENG    | AI/ML and Data Analytics     |
| N   | AICCOLDI                  |        |            |                              |



# Industry Research Advisory Board (IRAB)

- John Drexler, Chief Operating Officer, ARCH Resources
- Tom Barnes, Sr. Manager, Global Service Excellence, Komatsu America Corp
- Jim Humphrey, Sr. Marketing Specialist Autonomy (Rtd.), Caterpillar Global Mining
- Justin Higginbotham, General Manager, Operations & Projects, Fred Weber Inc.
- □ Tracy Hayford, Director of Technology, MATRIX Design Group, LLC
- David L. Weaver, Regional Manager, South-Central Division, MSHA
- Bryan Galli, Group Chief Executive (Rtd.), Peabody Energy Corporation
- Lane Hendricks, Safety Manager, Prairie State Generating Company
- Tom Michaud, Chief Technical Officer, Strata Worldwide
- Luke Mahony, Global Head of Eng, Technology & Innovation, Vale Base Metals



# **Partnership with CDC-NIOSH**

- Dr. Denise A. Baker, Behavioral Scientist & Associate Research Fellow, CDC-NIOSH Pittsburgh Mining Research Division
- Robert (Bob) Bissonette, PE, A&T Team Lead, CDC-NIOSH Spokane Mining Research Division
- Todd Ruff, MS, PE, Senior Scientist, CDC-NIOSH Spokane Mining Research Division



# **Six Research Focus Areas**

- IDA Intelligent Data Analytics
- CSNS Cyber & System Network Security
- HF-CM Human Factors and Change Management
- ICS Intelligent Communication Systems
- IRAM Intelligent Robot Assistance in Mining
- IMRPDS Intelligent Mine Rescue and Post-Disaster Surveillance



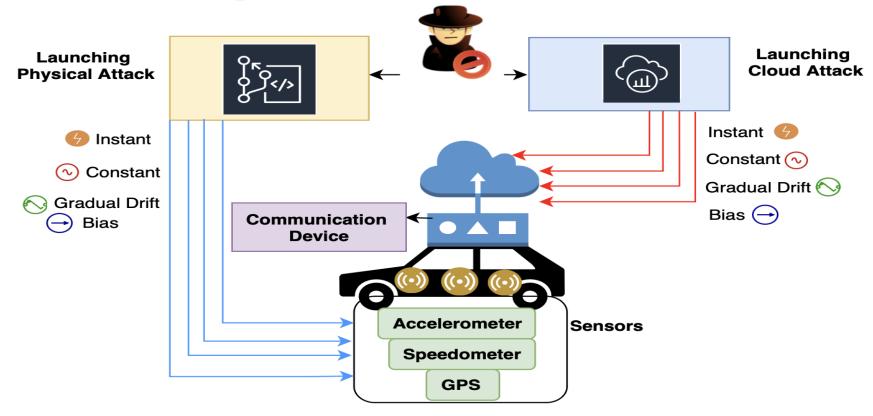
# **Cybersecurity Research Motivation**

- Mine ARI Systems require Safe, Secure, & Reliable Transfer and Processing of Large Data over Multiple Complex Networks
- Data Losses Causes: Human Errors, Malware, Dard Drive Malfunction, Software Corruption, and Sudden Power Outages
- Cost of Data Losses or Sensitive Data Leakages is Very High
- Disaster Recovery Preparedness Council: 2.1% of Surveyed Industry Reported Large Data Loss Costs
- 94% of Companies with Data Losses were Unable to Recover the Data and 51% ceased Operations



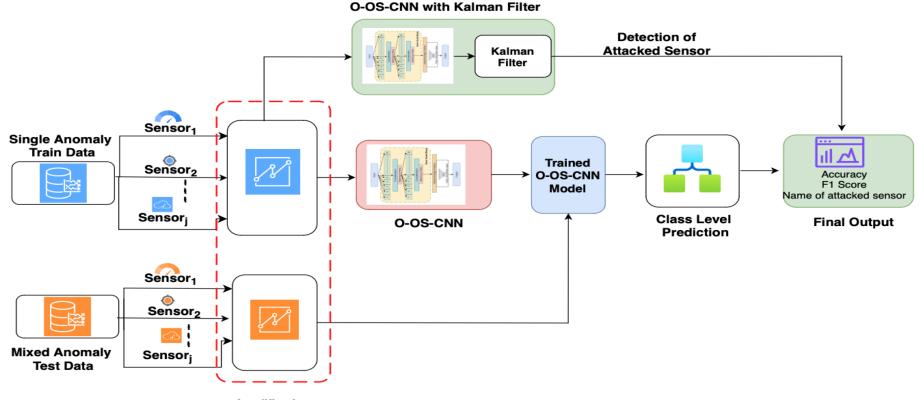
### **Research Focus Areas**

- Network and Data Security
- Data for Secure Message Delivery
- Multi-Sensor Fusion for Detection and Mitigation
- Advanced Virus and Data Encryption
- Network Authentication Process
- Random Threats Evaluation and Simulation




# **A Novel CAV-AD Cybersecurity Model**

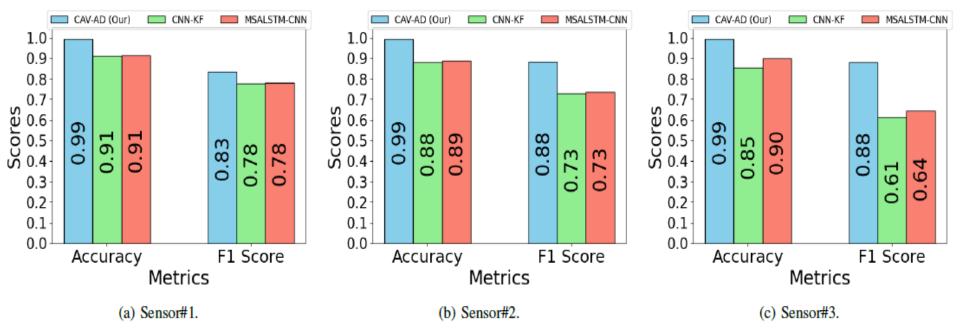
- Connected and Automated Vehicles (CAVs) are used in Public Transport Systems, Electricity Grid, and Manufacturing Systems
- CAVs uses Sensors and are susceptible to Critical Threats that compromise CAV Network Security
- We developed a Modified Anomaly Detection (AD) for CAVs, CAV-AD, for addressing CAVs Susceptibility to Critical Threats for Mining Assets
- CAV-AD comprises: (i) Convoluted Neural Network (CNN) Model called Optimized Omni-Scale CNN (O-OS-CNN), and (ii) Amplification Block to enhance Sensitivity for Detecting Anomalies




#### **Mining Infrastructure Threat Model**



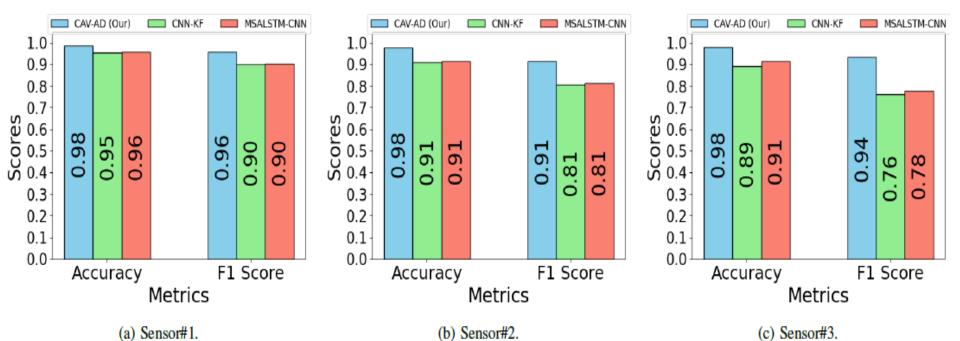



## **CAD-AD Framework with O-OS-CNN**



Amplification




#### Accuracy & F1 Score: CAV-AD, CNN-KF, MSALSTM-CNN Random Anomaly Detection



#### CNN-KF and MSALSTM-CNN are SOTA (State-of-the-Art) Methods



#### Accuracy & F1 Score: CAV-AD, CNN-KF, MSALSTM-CNN Constant Anomaly Detection



CNN-KF and MSALSTM-CNN are SOTA (State-of-the-Art) Methods



# **Novel CAV-AD Cybersecurity Model**

- CAV-AD integrates the proposed O-OS-CNN with a Kalman Filter to instantly identify malicious threats
- The results show that CAV-AD outperforms state-of-the-art methods, achieving an average accuracy of 98% and an average F1 (a measure of the harmonic mean of precision and recall) score of 89%
- Research is under way to develop a robust CAV-AD that achieves 100% average accuracy, since any inability to capture any malicious threat could be a disaster for any operation



# **Human Factors Research**

#### **Initial Learned Trust for AI or Human System**

- Hazard Detection; Confidence Level and Level of Interaction with System
  - 1. Design Interface (Dynamic Learned trust)
    - Perceived security; Benevolence (Sense of Care); Credibility; Personalization; Transparency and Communication; Familiarity and Predictability; and Ease of Navigation
  - 2. Trustee (Miner) (Dispositional Trust):
    - Gender; Culture; Age; Traits; Previous Hazards Exposure; and Activity
  - 3. Nature of Message, Alert, or Signal



#### **Human Factors Research**

- IRB Approval and Conducted Online Survey
- Received ≈200 Participants' Responses
- Data Analysis Underway

Analyze Data to determine Effect/Influence System Type (Human or AI) and Detail System Information (Low or High Level) have on Miner's Sense of Safety, Willingness to trust and delegate Operations to System

Analyze to understand how Miners Demographics (Age, Sex, Marital Status, etc.) influence their Safety, Trust and Delegation Decisions



# **Intelligent Communication System (ICS)**

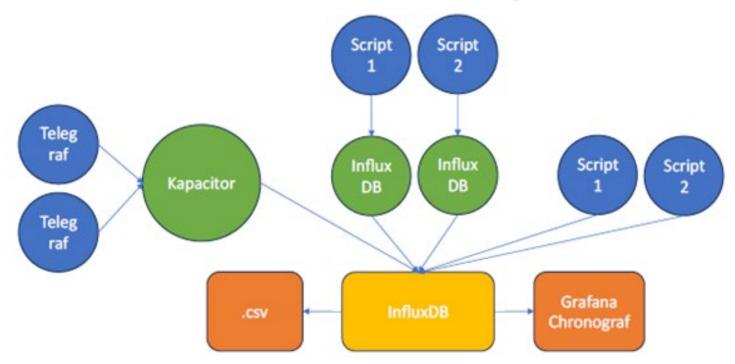


#### **Site Awareness Technologies:**

- Assist in Monitoring and Controlling Operations in Real-Time
- Enable Operators to identify Potential Hazards and take Actions to preclude Accidents and Fatalities
  - Use Sensors, Wi-Fi and Wireless Sensor Networks, and Real-Time Location Tracking Systems within RF Spectrum
- High Levels of Moisture, Dust, Rocks, Tunnel Effect, and other Obstacles can attenuate, reflect, or interfere with RF Signal Propagation

Study focuses on developing a New Network System to provide Robust Broadband Connectivity in Mining




# Intelligent Communication System (ICS)

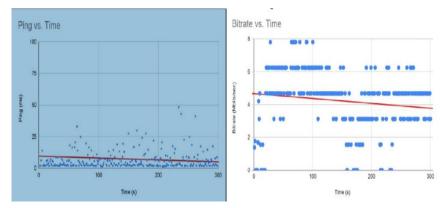
**Summary of Research Progress:** Developed Mesh Network Monitoring Tools to automate data collection with network status and its performance metrics throughout the network and with Network Status Visualization

**Summary of Notable Accomplishments:** Developed Wireless Mesh Network Monitoring Tools for Rapid Deployment and Experimentation with Mesh Network for Data Collection, Analysis and Optimization



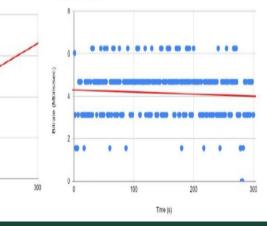
# **ICS: VLC/RF Network System**




#### Raspberry Pi compute Module 4 to implement Data Processing, Networking Protocol Library, and Digital Signal Processing



#### **ICS: High-Capacity Wi-Fi Based Mesh Network**


High capacity for data transfer and a mesh network monitoring to identify areas with low coverage for high-capacity systems

- Ad-hoc On-Demand Vector (AODV).
- Baseline Performance Testing
- Nodes placed along corridors in a to simulate mine shaft placement



Ping vs. Time







N1

Missouri University of Science and Technology

# **Intelligent Robotic Assistance in Mining (IRAM)**



Develop IRAM for Safe Operations in Deep Mines, High-Temperature Areas, Isolated Areas with Toxic and Explosive Gasses, or Tight Spaces

IRAM Provides: A research Testbed and Evaluation Platform to improve Workplace Safety and Health Conditions



# Intelligent Robotic Assistance in Mining (IRAM)

**Case Studies:** Two primary objectives:

- (A) Inherent safety
- (B) Technological expandability

#### Robot Assisted Gas Tomography





#### Julius





### **Immediate Strategies for Research Advances**

- Complete the Hiring of Researchers by 1<sup>ST</sup> Qtr. of 2025
- Meetings with PMRD/SMRP within 1<sup>ST</sup> Qtr. of 2025
- Visits with Caterpillar/Komatsu ASAP
- IRAB Meeting in 1<sup>ST</sup> Qtr. of 2025
  - First Site Visit at Missouri S&T in Summer 2025
    - Full Throttle Research Advances



# hanks for Your officention!

We MUST endeavor to eliminate mining fatalities within the NEXT TWO DECADES by efficiently managing ARI Systems, and controlling their risks and hazards, within human-centered environments.

We MUST harness the POWER of our CRITICAL PARTNERSHIPS with CDC-NIOSH, Industry, Academia, and other Public and Private Enterprises in making this happen.



