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Outline
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• Variability of respirable crystalline silica (RCS) content
• Variability of other respirable mineral phases
• Methodology 
Sampling of respirable mine dust
X-ray diffraction (XRD) analysis
Fourier transform infrared (FTIR) analysis
Principal components analysis (PCA) of XRD and FTIR 

data
• PCA of XRD results
• PCA of FTIR results
• What have we learned?



Respirable crystalline silica (RCS) can be present in every mining 
environment 

Miller, A., A. Weakley, P. Griffiths, E. Cauda and S. Bayman (2016). 
Applied Spectroscopy 71(5): 1014-1024.

Underground coal mines
As measured by MSHA P7 and NIOSH 0600 methods

Cauda, E., L. Chubb, R. Reed and R. Stepp (2018). Journal of Occupational 
and Environmental Hygiene 15(10): 732-742.

Five copper mines in AZ and NM – two trips
As measured by NIOSH 7500 and NIOSH 0600
methods
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Advanced exposure monitoring needed that accounts for dust 
complexity

Feldspar minerals, muscovite, microcline are known 
interferents in the quantification of RCS by FTIR

Unpublished data



Methodology
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Sampling of the respirable fraction from bulk material
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Respirable fraction of each dust is 
sampled from the bulk material

130 bulk mine dust samples were collected 
from 57 different operations in 15 different 
states
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Fourier transform infrared 
(FTIR) spectroscopy

Two analytical techniques

X-ray powder diffraction (XRD)

• Analyses performed by 
H&M Analytical Services

• Direct-on-filter
• Semi-quantitative

• Analyses performed at 
NIOSH/PMRD

• Direct-on-filter



Generated a lot of data…
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Data table with 130 samples and 29 (possible) 
mineral phases total

130 FTIR spectra
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• Provides better 
visualization

• Maximizes relevant 
information

• Reveals patterns and 
unique samples

Principal 
Components 

Analysis (PCA)

Mathematical technique

(MATLAB + PLS_Toolbox)

XRD data 29 variables

FTIR data 1765 variables
OR
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General process for Principal Components Analysis
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3. Estimate model 4. Examine model1. Examine data 2. Pre-process
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Principal Components 
Analysis of XRD data –

Results  
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Complexity of mine dusts – XRD perspective
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Abundance of mineral phases in samples collected from different mining operations



Principal Components Analysis of XRD Data
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Relationships between samples: limestone samples 
show strong similarity with each other within the model

Relationships between variables: dolomite, calcite and 
muscovite are strongly influential to the model
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Scores on PC 1 (27.33%)
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Scores and Loadings plots

T1245-17 (limestone)
• No calcite or dolomite
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T1178-1 (gold)
• 55% alunite

T1486-7 (copper)
• 97% cristobalite

Principal Components Analysis of XRD Data
Identification of unique samples

T1245-17 (limestone)
• No calcite or dolomite
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Principal Components 
Analysis of FTIR data –

Results  



Complexity of mine dusts – FTIR perspective

16Mean spectra from each type of mining operation

Silica (quartz) doublet
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Mean spectral features in silica (quartz) doublet from each type of mining operation
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Principal Components Analysis of FTIR Data
Scores plots

Relationships between samples: Limestone and iron samples show strong within-commodity 
similarities. Differences between copper, gold and S&G samples are less clear.

T1245-17 (limestone)
• No calcite or dolomite
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Principal Components Analysis of FTIR Data
Identification of unique samples

T1178-1 (gold)
• 55% alunite

T1486-7 (copper)
• 97% cristobalite
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What have we learned?

In general
• PCA model can classify limestone samples easily
• Agreement with mineralogy data increases confidence in PCA as an 

analysis tool
• Iron and granite may be classified with extra effort
• Copper and gold mines are not easily separated from each other

Results of PCA models of XRD and FTIR both show
• Identification of samples with unique characteristics
• Some similar patterns and sample groupings
• FTIR may be used for this type of exploratory analysis 
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FUTURE WORK

EXPAND NUMBER OF 
SAMPLES TO IMPROVE 

MODEL

IMPROVE RESPIRABLE 
SAMPLING 

TECHNIQUES

IMPROVE QUALITY OF 
THE XRD DATA
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Fourier transform infrared (FTIR) 
spectroscopy

Two analytical techniques

X-ray powder diffraction (XRD)

• Panalytical X'pert MPD 
diffractometer, H&M 
Analytical Services

• Direct-on-filter
• Mineral phase 

identification with ICSD 
powder 

• Bruker alpha
• Analyses performed at 

NIOSH/PMRD
• Direct-on-filter
• Filter subtracted out



Estimation of PCA-XRD model – 8 PCs

25



-0.4 -0.2 0 0.2 0.4 0.6 0.8

PC 5 (8.54%)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

PC
 6

 (5
.6

8%
)

 Quartz

 Cristobalite

 Plagioclase

 K-feldspar

 Kaolinite

 Talc

 Chlorite

 Muscovite

 Amphibole

 Dolomite

 Jarosite

 Hematite

 Magnetite

 Hydroxide

 Unknown

Decluttered

Relationships between samples: iron mine samples 
show strong variation along PC6

Relationships between variables: quartz, magnetite, 
hematite strongly influence PC6
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Principal Components Analysis of XRD Data
Scores and Loadings plots



Relationships between samples: limestone mines show 
strong variation along PC2 and PC3

Relationships between variables: dolomite, calcite and 
muscovite influence PC2 and PC3
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Principal Components Analysis of XRD Data
Scores and Loadings plots



Removal of limestone mines reveals other structures in the data set
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Removal of limestone mines reveals other structures in the data set
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PCA model of just Gold-Copper
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Estimation of PCA-FTIR model – 5 PCs
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Principal Components Analysis of FTIR Data
Scores plots

Relationships between samples: limestone samples spread more across PC3 and PC2 and are 
harder to distinguish from other sample types.



33

Relationships between samples: Relationships between variables:

Principal Components Analysis of FTIR Data
Scores and loadings Plots
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Relationships between samples: Relationships between variables:

Principal Components Analysis of FTIR Data
Scores and loadings Plots
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