Investigation of silica dust toxicity based on particle characteristics and exposure dose

> Pedram Roghanchi Shuguang Leng

Katherine Zychowski Wei-Chung Su

The University of Texas Health Science Center at Houston

Interdisciplinary Team

Dr. Katherine Zychowski Assistant professor of Biobehavioral Health and Data Sciences University of New Mexico

Dr. Pedram Roghanchi

Assistant professor of Mineral Engineering New Mexico Institute of Mining and Technology

Dr. Shuguang Leng

Assistant professor of Epidemiology, Biostatistics, and Preventive Medicine University of New Mexico

Dr. Wei-Chung Su

Assistant professor of Environmental Sciences University of Texas Health Science Center at Houston

Objectives

- To investigate the respirable silica dust (RCS) true dose of exposure
- ✓ To understand the RCS level of toxicity

RCS monitoring methods (crystalline silica on filters)

P7 method (FTIR)	Coal mines
P2 method (XRD)	Metal/nonmetal mines
NIOSH	7500 (XRD)
NIOSH	7602 (IR-KBr pellet)
NIOSH	7603 (IR-redeposition)
OSHA	ID#142 (XRD)

Filters with the maximum collection efficiency (e.g., PVC filters)

The total mass of the RCS collected on a filter is assumed to <u>all become the miner's exposure dose</u>

Respirable dust inhalation vs deposition

- Not all the inhaled particles will be deposited in the respiratory system
- ~20% of 5 μ m dust particles will be exhaled (AMEC, 2013)

- Mucociliary clearance is the
- Dust particle respiratory deposition depends on the particle size and particle shape
- The level of toxicity depends on the true dose of exposure
- The number-concentration-based RCS samples could be an alternative index for RCS true dose estimations
 - lesser degree reenter into the interstitium and enter the lymphatics

 10^{2}

Respirable dust particle deposition experiment

This study is funded by the **National Institute for Occupational Safety and Health (NIOSH) [75D30119C06390]**. Mobile Aerosol Lung Deposition Apparatus (MALDA) was designed and fabricated by Dr. Wei-Chung Su at the UTHealth.

Study design. Mice were subjected to PM exposures via pharyngeal aspiration ($100\mu g/50\mu L$). Three groups of mice (n=8) were exposed to either dispersion media (DM), Claim 28 dust, or St. Anthony mine dust, repeatedly, once per week (wks. 8-11)

St. Anthony Mine, Paguate, NM

Claim 28, Blue Gap Tachee, AZ

Claim 28 and St. Anthony mine dust exposure led to an increase in neutrophil infiltration into the lung

Bronchoalveolar lavage (BAL) fluid parameters. Following euthanasia of each mouse, BAL was collected via tracheal puncture and assessed for number of inflammatory cells for A) total cell counts (cells $x10^5$) B) macrophage cells (cells $x10^5$) C) neutrophilic cells (cells $x10^5$) and D) total protein

Lung gene expression and neutrophil elastase Statistics were executed using a one-way ANOVA followed by a Kruskal-Wallis post hoc test and considered significant at p<0.05.

- Early-life exposure to St. Anthony mine dust resulted in long-term lung inflammation in a mouse model
- Claim 28 dust exposure did not result in the same long-term lung inflammation in a mouse model
- Follow-up studies involving exposure to dusts with silica and other metals is warranted

Silica Dust Toxicity Level

- Collection of PM from mine-sites
- Characterization of PM
- Expose rodents to aerosolized dusts in the chamber (controlled exposures)
- Measure biological endpoints

"Bench-scale" biomass exposure system in the University of New Mexico Inhalation Toxicology Laboratory allows for control of fuel type, air supply, dilution and filtration, with real-time monitoring of PM1, PM2.5 and PM10 mass concentration and PM size distribution

A Molecular Epidemiological Study of Lung Injury in Miners

Study subjects

- Miners with PMF
- Miners with silicosis
- Miners with healthy lungs
- Non-miners controls

Environmental exposure

- Number concentration
- Mass concentration
- Size distribution
- Surface area
- Elemental content

Induction sputum

- Particle characterization in macrophages
- Inflammatory cell count and differential
- Cytokines and chemokines
- Fibroblast chemoattractant and growth and collagen production factors

Outcome

- Group identification (Differences between exposures or injuries)
- Lung function
- Airway dimensions
- Lung injury biomarker

Conceptual Framework

Carbon content in airway macrophage as an internal bio-effective dose of nano-scale carbon black exposure

Carbon black aggregate under Scanning Electron Microscope

- 10-50 nm diameter for primary carbon sphere
- Aggregate as smallest inseparable unit of nano-scale size (<1000 nm)
- Inhalation as major exposure path in humans during manufacture

Quantitative Computerized Tomography Assessment of Small Airway Dimensions

Karayama, et al. Scientific Reports 2017

Scatter Plots and Correlation Between CCAM and Average Wall Area %

Carbon content in airway macrophages was associated with airway wall thickening at 6th and 9th generations of airways in a monotonically increasing dose-response manner.

Scatter Plots and Correlation Between Small Airway Measurements and Lung Function

Higher airway wall thickening at 6th and 9th generations of airways was associated with lower lung function (FEV1 and FVC) and worse airway obstruction (FEV1/FVC).

Long-term Goal

RCS external dose

Thank You!

Dr. Katherine Zychowski University of New Mexico <u>kzychowski@salud.unm.edu</u> Funding: NIH/NIEHS K99 and R00 ES029104

Dr. Pedram Roghanchi

New Mexico Institute of Mining and Technology <u>Pedram.roghanchi@nmt.edu</u> Funding: NIOSH 75D30119C06390

Dr. Shuguang Leng University of New Mexico <u>sleng@salud.unm.edu</u> Funding: Pilot project- NIH/NIEHS P42 ES025589

Dr. Wei-Chung Su University of Texas Health Science Center at Houston <u>Wei-chung.su@uth.tmc.edu</u> Funding: NIH/NIEHS R21 ES031795

Tracheobronchial Tree

Intraclass Correlation Coefficient

How strongly the pattern of first measures as a group resembles the second measures

Quantitative CT and advanced analytical informatics allow a precise and reliable assessment of small airway dimensions

Cao X, ..., Leng S. Toxicol Sci, 2020